The Los Angeles Stroke Rehabilitation Network

Stroke Rehabilitation Continuing Education Workshop

Date: Saturday, November 15th, 2025

Time: 9:00 AM – 12:00 PM

Location: UCLA Franz Hall, Room 1178 (see next page)

The Workshop can also be attended via Zoom; link provided

after RSVP

RSVP form: http://thelasernet.com/workshop 2025.aspx

Parking: No charge for those who RSVP by November 8th, 2025.

Cost: Free. Refreshments will be provided.

Website: <u>thelasernet.com</u>

Other information: Continuing Education credits have been arranged for OTs, PTs, and SLPs at no charge.

Agenda

9:00 – 9:30 Are We Adequately Integrating Basic Neuroscience Evidence into the Rehabilitation of

Patients Post Stroke?

Nancy N. Byl, PT, MPH, PhD, FAPTA University of California, San Francisco

9:30 – 10:00 Dementia and its Effects on Stroke Recovery

Jason D. Hinman, MD, PhD, FAHA University of California, Los Angeles

10:00 – 10:30 Telerehabilitation After Stroke

Steven C. Cramer, MD, MSc, FAAN, FAHA, FASNR

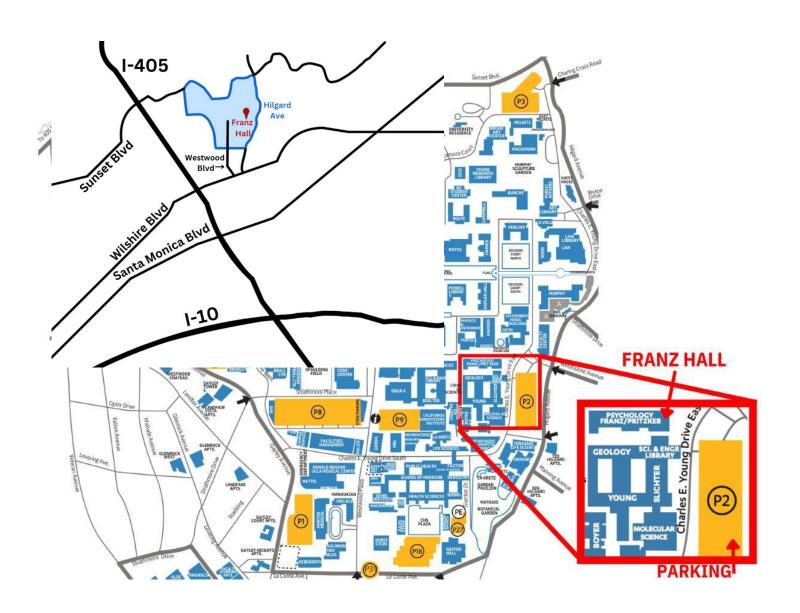
University of California, Los Angeles

10:30 – 11:00 *Refreshments*

11:00 – 12:00 The Science and Practice behind Ipsilesional Arm Movements after Stroke

Carolee J. Winstein, PhD, PT, FAPTA, FAHA, FASNR, FNAK

University of Southern California



TO RSVP, fill out the form on

http://thelasernet.com/workshop_2025.aspx

or use the QR code above.

Speaker Biographies

Nancy Byl, PT, MPH, PhD, FAPTA University of California, San Francisco

Nancy Byl is Professor and Chair Emeritus at UCSF, School of Medicine, Department of Physical Therapy and Rehabilitation Science. She has been involved in clinical practice for 60 years. She is experienced as an administrator, educator, researcher and clinician. Her research has focused on basic science studies in neuroscience relative to focal hand dystonia, stroke and Parkinson's Disease. She is respected for translating her basic science findings to clinical intervention studies to determine that sensory motor retraining can normalize cortical mapping and improve motor control in patients with neurological impairments. She is familiar with the challenges of integrating robotics and exoskeletons and motivating patients to engage in supervised and home based neural adaptive activities working with family members and friends.

Jason Hinman, MD, PhD

University of California, Los Angeles

Jason Hinman, M.D., Ph.D. is Associate Professor of Neurology, Interim Director of the UCLA Mary S. Easton Center for Alzheimer's Research & Care, Member of the UCLA Comprehensive Stroke Center, and West Los Angeles VA Stroke Program Director. His NIH funded research group focuses on molecular pathways at the interface of stroke and dementia with a goal of developing new diagnostic and therapeutic tools for vascular cognitive impairment and brain repair. The lab is highly collaborative and uses a multimodal approach for novel diagnostic and therapeutic discovery using clinical, translational, basic science models of stroke and neurodegeneration. He is nationally recognized as a Fellow of the American Heart Association, Member of the AHA Council on Stroke, Member of the AHA Brain Health Committee, and an expert in vascular cognitive impairment.

Steven Cramer, MD, MSc, FAAN, FAHA, FASNR University of California, Los Angeles

Steven Cramer is a Professor in the Department of Neurology at the University of California, Los Angeles, where he is also the Director of the Neurorehabilitation Program and serves as the Medical Director of Research at California Rehabilitation Institute. He is board-certified in neurology, vascular neurology, and internal medicine. He is also a co-Investigator in the NIH StrokeNet clinical trials network, where he serves as the Chair of the Recovery & Rehabilitation Group. His research focuses on stroke recovery in humans and its treatment.

Carolee Winstein, PT, PhD University of Southern California

Carolee Winstein, PT, PhD, has dedicated her career to conducting interdisciplinary research to better understand control, rehabilitation, and recovery of goal-directed movement. She retired from her professorship at the end of June 2023. She is Professor Emerita of Biokinesiology and Physical Therapy with a joint appointment in the Department of Neurology, and the Interdisciplinary Neuroscience program at the University of Southern California (USC). Since 1990, her research program focused on the development of nonpharmacologic rehabilitation interventions, motivated and informed by brain and behavioral science, to

enhance or even accelerate recovery in persons who have damage to the CNS. Her research interests and contributions have spanned three main areas: 1) neuroimaging studies to improve our understanding of the underlying neural substrates and mechanisms involved in recovery, as well as to identify potential neuroimaging biomarkers that may predict recovery; 2) clinical trials of behavioral interventions and studies investigating behaviors such as limb choice and limb non-use after stroke; and 3) rehabilitation engineering research to develop and evaluate novel rehabilitation technologies and tools. She remains involved in neurorehabilitation research today with long-time colleagues and former students. Her passion for the field includes mentoring junior investigators, writing perspectives, giving seminars and webinars, and attending professional meetings.

Learning Objectives:

- To appreciate emerging treatment approaches for neurorehabilitation following stroke.
- To understand research approaches to developing novel neurorehabilitation treatment strategies.
- To understand the use of technology in stroke neurorehabilitation.
- To evaluate the impact of clinical factors in recovery after CNS injury such as stroke.
- To contextualize new developments in motor learning and control.
- To analyze post-stroke recovery across levels, from neuron to behavior.

